FINAL EXAM (POONEN) - ANSWER KEY

PEYAM RYAN TABRIZIAN

Multiple Choice:

(1) E
(2) B
(3) A
(4) C
(5) TRUE
(6) FALSE
(7) TRUE
(8) TRUE
(9) YES, 2
(10) NO
(11) NO
(12) YES, ∞
(13) YES, 2
(14) E
(15) D
(16) A
(17)

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
-\frac{1}{3} \\
-\frac{2}{3} \\
\frac{2}{3}
\end{array}\right],\left[\begin{array}{c}
\frac{2}{3} \\
\frac{1}{3} \\
\frac{2}{3}
\end{array}\right]\right\}
$$

Note: The only difference between this problem and what we've usually been doing is that when you apply the Gram-Schmidt proacess for the eigenspace corresponding to $\lambda=0$, you have to choose:

$$
\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{c}
-\frac{2}{3} \\
\frac{2}{3} \\
\frac{1}{3}
\end{array}\right]
$$

And $\mathbf{u}_{\mathbf{2}}$ is either one of the other eigenvectors you found (just choose your favorite one!)
(18) (a)

$$
A_{0}=4, \quad A_{1}=-\frac{8}{\pi}, \quad A_{3}=\frac{8}{3 \pi}, \quad A_{5}=\frac{8}{5 \pi}
$$

[^0]Note: All the B_{m} terms are 0 because f is an even function (we want a cosine series)
(b) $\frac{0+4}{2}=2$

54/Practice Exams/Poonengraph.png

(19) Use generalized eigenvectors:

$$
\mathbf{x}(t)=e^{3 t}\left[\begin{array}{l}
2 \tag{20}\\
1
\end{array}\right]+t e^{3 t}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+e^{3 t}\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
$$

$$
u(x, t)=5 e^{-\frac{t^{2}}{2} 1^{2}} \sin (x)+7 e^{-\frac{t^{2}}{2}(2)^{2}} \sin (2 x)=5 e^{-\frac{t^{2}}{2}} \sin (x)+7 e^{-2 t^{2}} \sin (2 x)
$$

[^0]: Date: Monday, December 12th, 2011.

